Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Suppressing Instability of Liquid Thin Films by a Fibril Network and its Application to Micropatterning without a Residual Layer

Identifieur interne : 000032 ( Main/Repository ); précédent : 000031; suivant : 000033

Suppressing Instability of Liquid Thin Films by a Fibril Network and its Application to Micropatterning without a Residual Layer

Auteurs : RBID : Pascal:14-0085547

Descripteurs français

English descriptors

Abstract

This study proposes a method to coat thin films of non-volatile solvents on substrates. A small amount of crystalline polymer dissolved in solvents forms a network of crystalline fibrils during the coating process. The network suppresses dewetting of the solvent liquid and helps the liquid film sustaining on the substrate. This strategy can be used in soft lithography to generate micropatterns of diverse materials without having a residual layer. This process does not request etching for achieving residual layer-free micropatterns, which has been a long challenge in soft lithography. As examples, we demonstrate micropatterns of polymer hydrogels and metal oxides (ZnO, In2O3).

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0085547

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Suppressing Instability of Liquid Thin Films by a Fibril Network and its Application to Micropatterning without a Residual Layer</title>
<author>
<name>JAEYOON PARK</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>MINWOO PARK</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>UNYONG JEONG</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0085547</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0085547 INIST</idno>
<idno type="RBID">Pascal:14-0085547</idno>
<idno type="wicri:Area/Main/Corpus">000071</idno>
<idno type="wicri:Area/Main/Repository">000032</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1022-1336</idno>
<title level="j" type="abbreviated">Macromolecul. rapid commun.</title>
<title level="j" type="main">Macromolecular rapid communications</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acrylate polymer</term>
<term>Alcoholic solution</term>
<term>Colloidal gel</term>
<term>Dewetting</term>
<term>Electrical properties</term>
<term>Ethylene oxide polymer</term>
<term>Experimental study</term>
<term>Fibrillar structure</term>
<term>Gelation</term>
<term>Indium oxide</term>
<term>Kinetics</term>
<term>Liquid film</term>
<term>Mechanism</term>
<term>Patterning</term>
<term>Photoconductivity</term>
<term>Photopolymerization</term>
<term>Physical gel</term>
<term>Prepolymer</term>
<term>Semiconductor materials</term>
<term>Silicon</term>
<term>Solution crystallization</term>
<term>Spin-on coating</term>
<term>Surface topography</term>
<term>Time curve</term>
<term>Ultraviolet radiation</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ethylène oxyde polymère</term>
<term>Solution alcoolique</term>
<term>Cristallisation solution</term>
<term>Gélification</term>
<term>Cinétique</term>
<term>Mécanisme</term>
<term>Gel physique</term>
<term>Structure fibrillaire</term>
<term>Dépôt centrifugation</term>
<term>Film liquide</term>
<term>Démouillage</term>
<term>Silicium</term>
<term>Formation motif</term>
<term>Polymérisation photochimique</term>
<term>Prépolymère</term>
<term>Acrylate polymère</term>
<term>Gel colloïdal</term>
<term>Topographie surface</term>
<term>Oxyde d'indium</term>
<term>Oxyde de zinc</term>
<term>Semiconducteur</term>
<term>Photoconductivité</term>
<term>Rayonnement UV</term>
<term>Caractéristique temporelle</term>
<term>Etude expérimentale</term>
<term>Propriété électrique</term>
<term>Cristallisation sous pression</term>
<term>Lithographie molle</term>
<term>Lithographie force capillaire</term>
<term>Diacrylate de polyéthylèneglycol polymère</term>
<term>Dimension motif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study proposes a method to coat thin films of non-volatile solvents on substrates. A small amount of crystalline polymer dissolved in solvents forms a network of crystalline fibrils during the coating process. The network suppresses dewetting of the solvent liquid and helps the liquid film sustaining on the substrate. This strategy can be used in soft lithography to generate micropatterns of diverse materials without having a residual layer. This process does not request etching for achieving residual layer-free micropatterns, which has been a long challenge in soft lithography. As examples, we demonstrate micropatterns of polymer hydrogels and metal oxides (ZnO, In
<sub>2</sub>
O
<sub>3</sub>
).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1022-1336</s0>
</fA01>
<fA03 i2="1">
<s0>Macromolecul. rapid commun.</s0>
</fA03>
<fA05>
<s2>35</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Suppressing Instability of Liquid Thin Films by a Fibril Network and its Application to Micropatterning without a Residual Layer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JAEYOON PARK</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MINWOO PARK</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>UNYONG JEONG</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>560-565</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>4111R</s2>
<s5>354000501131180020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0085547</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Macromolecular rapid communications</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This study proposes a method to coat thin films of non-volatile solvents on substrates. A small amount of crystalline polymer dissolved in solvents forms a network of crystalline fibrils during the coating process. The network suppresses dewetting of the solvent liquid and helps the liquid film sustaining on the substrate. This strategy can be used in soft lithography to generate micropatterns of diverse materials without having a residual layer. This process does not request etching for achieving residual layer-free micropatterns, which has been a long challenge in soft lithography. As examples, we demonstrate micropatterns of polymer hydrogels and metal oxides (ZnO, In
<sub>2</sub>
O
<sub>3</sub>
).</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D09D04G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A65</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70B80J</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Ethylène oxyde polymère</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Ethylene oxide polymer</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Etileno óxido polímero</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Solution alcoolique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Alcoholic solution</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Solución alcohólica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cristallisation solution</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solution crystallization</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Cristalización solución</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Gélification</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Gelation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Gelificación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Cinétique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Kinetics</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Cinética</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Mécanisme</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Mechanism</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Mecanismo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Gel physique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Physical gel</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Gel físico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Structure fibrillaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Fibrillar structure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estructura fibrilar</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Dépôt centrifugation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Spin-on coating</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Film liquide</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Liquid film</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Capa líquida</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Démouillage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Dewetting</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Silicium</s0>
<s1>SUB</s1>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Silicon</s0>
<s1>SUB</s1>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Silicio</s0>
<s1>SUB</s1>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Formation motif</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Patterning</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Formacíon motivo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Polymérisation photochimique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Photopolymerization</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Polimerización fotoquímica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Prépolymère</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Prepolymer</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Prepolímero</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Acrylate polymère</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Acrylate polymer</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Acrilato polímero</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Gel colloïdal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Colloidal gel</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Gel coloidal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Topographie surface</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Surface topography</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Photoconductivité</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Photoconductivity</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Fotoconductividad</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Rayonnement UV</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Ultraviolet radiation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Radiación ultravioleta</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Caractéristique temporelle</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Time curve</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Característica temporal</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Propriété électrique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Electrical properties</s0>
<s5>32</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Propiedad eléctrica</s0>
<s5>32</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Cristallisation sous pression</s0>
<s4>INC</s4>
<s5>41</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Lithographie molle</s0>
<s4>INC</s4>
<s5>42</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Lithographie force capillaire</s0>
<s4>INC</s4>
<s5>43</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Diacrylate de polyéthylèneglycol polymère</s0>
<s2>NK</s2>
<s4>INC</s4>
<s5>44</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Dimension motif</s0>
<s4>INC</s4>
<s5>45</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000032 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000032 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0085547
   |texte=   Suppressing Instability of Liquid Thin Films by a Fibril Network and its Application to Micropatterning without a Residual Layer
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024